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ABSTRACT

The problem of mathematically modeling the ultrahigh vacuum system and
of determining methods for the optimizing of its performance is discussed in
the report "On the Optimization of the Space Physics Research Laboratory Ulta-
high Vacuum System."

The approach used is the utilization of modern control theory methods to
synthesize a control scheme which optimizes the system performance with re-
spect to a predetermined cost function.

A sub-optimal controller for the system is then presented which overcomes
the financial problems associated with the optimal system that beset a truly
optimal system.

vi
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1. INTRODUCTION

In the Space Physics Research Laboratory at The University of Michigan,
an attempt to optimize the performance of the existing vacuum system accord-
ing to a prescribed criterion has been made. The techniques of modern control
theory have been applied. Before its construction, the resulting controller
has been investigated from the economical and practicable points of view. If
the optimal system controller cannot be implemented practicably, then consider-
ation should be given to the use of a classical controller. In addition, if
the optimal system proves to be uneconomical, an investigation should also be
made for the use of a sub-optimal controller. Finally, the report includes a
practical design for the construction of a controller which improves the per=-
formance of the existing vacuum system.

2. A DESCRIPTION OF THE SPACE PHYSICS RESEARCH LABORATORY
ULTRAHIGH VACUUM SYSTEM

The ultrahigh vacuum system, designed and assembled at the Space Physics
Research Laboratory, consists of the following components, each serving a spe-
cific purpose:

a. The vacuum chamber, whose pressure must be controlled;
b. The vacuum pump, which removes gases from the chamber;

c. The leak valve, the device which varies the amount of gas leak-
ing to the pressure-controlled chamber; and

d. The pressure gauge, the component that senses the pressure in
the vacuum chamber and makes it available for measuring and
recording.

In order to study the vacuum system from the control system point of view,
it 1s necessary to analyze the components listed above. When the system is
studied from the control system point of view, other parts of the vacuum sys-
tem, e.g., the oven for baking and other accessory equipment for performing ex-
Periments, are considered to have little or no effect.

For the vacuum system under study, the pressure is being controlled in an
open~loop fashion. There is no way to compensate for disturbances in the sys-
tem resulting from the outgassing effect of the walls or from the absorbing ef-
fect. Normally the operator is faced with two problems. The first one is set-



ting the valve position in order to have a desired pressure, a tedious opera-
tion which requires much time, even by an experienced operator. An overshoot
due to the time lag introduced by the vacuum chamber, which conseguently in-
creases the settling time of the system, usually results. The second problem
arises when a disturbance occurs in the system and changes the output pres-
sure. Unless the system is monitored by the operator, the actual pressure
may be significantly different from the desired value. The operator mentally
computes the amount he must open or close the valve to correct the undesirable
situation which has developed in order to restore the pressure to the desired
value. Manual performance of the small variations in the opening or closing
of the valve isg difficult because of mechanical problems associated with the
existing leak valves (primarily, backlash and valve nonlinear gain over the
operating range) and because of the physical limitations of the human opera-
tor.

3. THE MATHEMATICAL MODEL OF THE VACUUM SYSTEM

The main objective of developing the mathematical model of the vacuum sys-
tem is to optimize the performance of the vacuum system according to a defined
optimization criterion. To do so first requires a definition of the plant and
then the development of the mathematical model. The plant or the fixed portions
of the vacuum system refer to the ultrahigh vacuum system (UHVS) components de-
fined above and to the driving system. The driving system consists of a motor
and a possible gear train. An a-c driving system will be used in order to avoid
the difficulties usually associated with a d-c driving system. These components
may be integrated into a schematic block diagram indicating their relationship
to the overall system (Figure 1).

Outside Disturbance
(outgassing or absorbing)

Voltage Motor |9y Gear S| Leak Valve | Leak Vacuum lon lonization Output
— — - o L SR s—
Input Rate (1) %m’ grip% 9 Current G&:?fd ler Pressure

Figure 1. Plant of the ultrahigh vacuum system.

3.1 THE VACUUM CHAMBER AND PUMP PIPING MODEL

The vacuum chamber and pump piping model depends on the formulation of
the electric circuit analog for a vacuum system. The idea of such an analog
rests upon the fundamental similarity between the flow of gas in a vacuum sys-
tem and that of the charge in an RC electric circuit (1,2). The scalar point
function, electrical potential in electrical field theory, corresponds to the




scalar point function in gas flow pressure. Conservation of the scalar quan-
tity charge corresponds to conservation of mass. The concept of electrical
conductance of a conductor corresponds to the concept of a flow-conductance of

a component of the vacuum system. The electrical capacity of a conductor corre-
sponds to the volume of a vacuum system component.

By using these concepts, the electric circuit analog of the vacuum sys-
tem, shown schematically in Figure 2, is given in Figure 3. The symbols in-
troduced in Figure 5 are defined as follows:

I Controlled variable leak rate source of the leak valve

I3 = Uncontrolled variable leak rate equivalent source of the
absorption or outgassing of chamber walls

C1 = Volume of the vacuum chamber

Gy = g; = Conductance of the vacuum chamber
Co = Volume of pump piping

Go = ﬁ% = Conductance of pump piping

The system equation in the complex frequency domain for the model in
Figure 3 yields

I(s) + Id(s) = P(s) sCq + L
R, . L
502
Rl + 1
Ry + —
SCg

By rearranging,

I(S) + Id(S) 1 + [Cg Rp + Cl(Rl + Rg)]s + C1 C2 R1 Rp 82

P
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Figure 2. Schematic diagram of the vacuum system.
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Figure 3. Electric cilrcuilt analog of the vacuum system.
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1

It is evident from the dimensions of the vacuum system that Cg<< Cy

{ ctamber volume is much larger than pump piping volume). Therefore

B Rl + R2 7]
5 +| ——————
P(s) _ 1 Co Ry Rp
| os© + s +
B 02 Rl R2 Cl 02 Rl R2_
__ . "I
= L 1 Co Ry Rp\ 7t
Ci| S+ =7 1+ ——
i C:L(Rl + R,) Ry + Ry
P(s) ~ 1
=~ (R, +R,) -
I(s) + Id(s) ( 1 2) 1+ Cl(Rl + Rg)s

This relation means that the wvacuum chamber with the pump piping can be
represented in the overall system by a gain (Rl + RE) and a time constant
Cl(Rl + R2). This mathematical model is valid for all finite wvalues of Rl and
Ro (which are related to the speed of the pump), so long as the volume of the

chamber is much larger than the volume of the pump piping.

For the vacuum system under consideration,

CE = 2.561

Rl = 0.2 S/f For the normal operating
) 3 f th

R, = 0.00667 s/l speed © € pump

li

Time Constant

106 x 0.20667

22 sec



3.2 THE VARTABLE LEAK VALVE MODEL

The valve used in the variable leak system is make by the Varian Vacuum Divi-

sion (3). It includes a movable piston with an optically-flat sapphire that
meets a captured metal gasket. The movement of the sapphire is controlled
through a threaded shaft-and-lever mechanism having a mechanical advantage of
13,000 to 1. Spring washers keep the drive mechanism constantly loaded in
order to minimize backlash. The construction details are shown in Figures L4
and 5. Figure 6 shows the leak rate as a function of the knob turns. The
valve component presents the major nonlinearity in the vacuum system. The
mathematical model of this component consists only of a variable gain, since
the dynamic behavior of the mechanical elements of the valve is neglected.
Therefore, the valve as a component in the vacuum system has a zero time con-
stant and a zero delay.
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3.3 THE IONIZATION GAUGE CONTROILLER MODEL

Figure T represents a schematic diagram of the Granville~Phillips Company
Controller used to sense and measure the pressure in the vacuum system. For
more details, the reader is referred to the controller manual (4). By considering
the chamber pressure as its input and the voltage reading as the output, such
an instrument is linear over each operating range. Its time constant is less
than 0.5 second.

50V | +
Power
Filament Control _
Amplifier Grid
Gauge Tube
Current Collector
Sensing ) Pressure Range
Resistor { Filament Electrometer "~ "Resistor
Emi ?‘— Pwr. Supply Tube
missd_| :
Current Emiss. Electrometer | |
Ret Adjust plifier (high|gain) |
Volts '
Zero f
Py Adjust Meter| X
Su'ger Regulated ~-lfledt.
ower Supply ORJef. Volts

-

Figure 7. The Granville-Phillips ionization gauge
controller as a portion of the vacuum system.

An experimental test has been made in order to determine the combined
characteristics of the three components listed above, the valve, the chamber,
and the ion gauge controller. The input, which is the knob rotation, is in
degrees, and the output is the voltage read by a digital voltmeter connected
across the output of the ion gauge controller. Three curves, obtained for
three different ranges of the ion gauge controller, are illustrated in Figure 8.
The curves represent steady-rate readings. The nonlinearity of the system is
primarily due to the valve characteristics.
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2

The equations representing the vacuum system in the time domain take now
the following form:

P(t) + Cy(Ry + Ry) B(t) = (R, + Ry) [I(t) + 14(t)]
and
1(t) = F[ey(t)]

where F is a nonlinear function of the input 6,(t), and P(t) is the time de-
rivative of the chamber pressure. If T _ 1s the time constant of the ionization
gauge controller, the pressure P(t) and the voltage reading V(t) of the ion
gauge controller can be related as follows:

T V(t) + V(t) = K, P(t)

Where &(t) is the time derivative of the voltage reading, Kg is the gain of the
ionization gauge controller. Figure 9 is a block diagram of the vacuum system.

Leak Chamber lonization Electronic
_._6_0(1 Valve —I-(lL —p— Gauge —P‘p—- Voltmeter Outputd
Controller Voltage

Figure 9. Block diagram of the vacuum system.

3.4 MODEL OF THE DRIVING MOTOR AND GEAR TRAIN

In small-power control systems, where the maximum output required from
the motor ranges from a fraction of a watt up to a few hundred watts, 2-phase
induction motors are used. The torque required to drive the leak valve has
been measured and has been found to be approximately L oz-in. A FPE25-11,
Navy type CDA-211052 Diehl a-c¢ control-servo motor is suggested as the driver.
The motor consists of a stator with two windings displaced 90 electrical de-
grees from each other and of a high resistance squirrel-cage rotor. Figure
10 represents a schematic diagram of the motor. A capacitor is used in order
to establish the 90° phase shift. It can be shown (5,7) for such a motor that

D

d de .

o gm_+ —2 4+ ¢ sin (6,) = Xk, vy(t)
ate at

11
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Reference
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Figure 10. The driving motor.

Where T, is the time constant of the motor, vi(t) is the input voltage signal to

the control winding of the motor, k, is its gain, em(t) is the position angle

of the motor shaft, and 6,(t) is the input position angle (angle of the valve

knob shaft). I
Hence 6,(t) = kg O,(t)

where kg = gear ratio

It should be noted that the term C sin (éo) represents the coulomb friction
force introduced in the system (Figure 11).

Output Force

Coulomb Force

éﬂ
Input Velocity

Figure 11. The coulomb friction force
introduced in the vacuum system.
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L., OPTIMIZATION OF THE VACUUM SYSTEM
BY USING THE MODERN CONTROL THEORY

The mathematical model developed previously is used to formulate a method
for optimally controlling the vacuum system in accordance with a prescribed
performance criterion. The optimal problem is one of controlling the chamber
pressure and of reducing the deviation from a prescribed reference value to
zero, while at the same time minimizing the value of some predetermined per-
formance of cost functional J. The development of the optimal control law
proceeds essentially in four steps. The first step consists of a reformula-
tion of the mathematical model in a form which is more suitable for the appli-
cation of optimization techniques. In the second step, an optimization cri-
terion is defined. 1In the third step, the particular optimization technigue
best suited for the optimization problem is chosen. Finally, in the fourth
step, this optimization technique is utilized to construct the optimal control
systenmn.

4.1 REFORMATION OF THE MATHEMATICAL MODEL

It is convenient to begin by reformulating the equations representing the
fixed portions of the vacuum system in the state variable formulation; i.e.,
in terms of a set of first order differential equations (8).

For the leak valve and the vacuum chamber, it has been shown that
P(t) + C1(Ry + Rp) P(t) = (Ry + Ro) [I(t) + I4(t)]
I(t) =F[6,(t)]
For the ionization gauge controller,
T v(t) + V(t) = k, B(t)

and for the driving motor and gear,

oy dey o
T S t— ¢+ C sin (GO) = ky, vy
dat dt
o,(t) = kg em(t).

13




Rearranging the equations which represent the fixed portion of the vacuum
system results in

. 1 1 1
P(t) = - EZ(§If:f§57 P(t) +~Ez F [po(t)] + EI Id(t) (1)
V(t) = - = V() + ky B(t) (2)
g
6,(t) = 61(t) (3)
8(8) = - =0 (8) +k, K vi(t) - Csin [0;(8)] (4)

Equations (1) through (4) represent an accurate state variable formulation
of the vacuum system. For engineering purposes, however, the following approx-
imations can be applied to the system without any appreciaeble error;

a. The time constant of the ionization gesuge controller can be
neglected with respect to that of the vacuum chamber.

b. The inertia of the load (leak valve shaft and accessories)
can be neglected since the load is primarily due to coulomb
friction.

c. The characteristigs of the valve can be assumed parabolic,
i.e., I(t) = k, Go(t), as observed from the experimental
curves.

Equations (1) through (4) now take the following form;

: N S 1, 2 1
P(t) = oL(R, 7 F) P(t) + e ky 65(t) + N I4(t)
v(t) = ké P(t)
éo(t) = Ol(t)
o = - 8() + k, ki vi(t) - C' sin [e,]

1k




Writing these equations in terms of the observable state variables, the
following equations are obtained:

. _ 1 ky kg 2 kg
v(t) = - C—lm v(t) + oy eo(t) + .C—l Id(t) (5)
6,(t) = -c' sin [6 (t)] + k kv (t) (6)

Equation (6) can be represented by the following two equations valid in
the operating ranges of éo(t).

- C' 4k, kn v (t) e (t) > o (1)

6, (t)

8 (t) C' +k k' v,(t) 6,(t) < o (8)

o( g m

The primed quantities are evident from equations (1) through (4).

L.2 THE OPTIMIZATION CRITERION

For a given dynamic system, the optimization criterion may assume a variety
of forms, depending on the requirement to be met. The choice of the optimiza-
tion criterion is an important step in the design of the vacuum system since
it determines to large degree the nature of the resulting optimal controller.
The main obJjective in the optimization of the vacuum system at the Space Re-
search Laboratory, The University of Michigan, is to obtain different levels
of pressure in a minimum time, and to compensate for any resulting distur-
bances. Disturbances in the system result primarily from either absorption or
outgassing, and are usually minimized by baking the system before operation.
Therefore, the major concern is to bring the system from one level of pressure
to another in minimum time. The optimal problem now is to choose a control
v{(t) such that it satisfies the differential equations (5), (7), and (8),
that it also satisfies the initial and final conditions, and that it concur-
rently minimizes the following functional form:

%

J = [ 7 at
t

‘1

initial time

=
=
0]
2]
&
c*.
|__J
L]

ct
"

final time
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Figure 12. State space for the vacuum system.

It is apparent from the nonlinearity of equations (5) and (6) representing
the system, that the solution for the optimal controller is a very difficult,
if not impossible, task. The resulting optimal controller must sense the state
variables of the system: the voltage read by the ionization gauge controller

V(t), and the output angle of the load 6,(t).
fed back through time-varying gains Kl and Kg.

is a nonlinear function of the state variables.

~zin | DRIVING MOTOR +
E LEAK VALVE +

VACUUM CHAMBER

These state variables are then

The gains are, in general, func-
tions of the state variables ©,(t) and V(t), the initial conditions, the dis-

turbance I4(t), and the time t. Consequently, the optimal control signal vi(t)
In block diagram form, the
optimal control system may be schematically represented as shown in Figure 13.

SENSING AND

MEASURING
DEVICES

o
[+]

BOUNDARY
CONDITION

GENERATOR

K

v

Figure 15. Schematic diagram of the optimal vacuum system.
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4.3 THE PRACTICAL IMPLEMENTATION

It is apparent from the complexity of the optimal feedback control system
that a computer is needed in order to synthesize such a scheme. Therefore,
before one attempts to obtain optimal solutions numerically, one should first
consider the possibility that a classical controller might do almost as well
as the optimal one. Since the optimal controller is uneconomical for the pur-
poses of the Space Physics Laboratory at The University of Michigan, an in-
vestigation has been made for the use of a sub-optimal controller.

5. A SUB-OPTIMAL SYSTEM

The problem of assembling a servo system in the classical way seems
straightforward. A motor which is capable of driving the given load under the
worst condition is chosen. The FPE25-11 Navy type CDA-211052 Diehl a-c con-
trol-servo motor is a suitable driver for the leak valves, through a 250:1
gear system. An amplifier is then selected with sufficient power output to
drive the motor to its full torque rating. A Maurer power amplifier (avail-
able at the Space Physics Research Laboratory), is selected to supply the
driving motor with the necessary power. This amplifier is capable of supply-
ing up to 50w. It also has a gain control. The circuit diagram of this am-
plifier is shown in Figure 1l4. In order to produce adequate voltage output

‘Of”mil

D4
IN207

Figure 1lk. Maurer servo amplifier,

L7



per degree of shaft rotation, a voltage amplifier stage 1s used to supply the
necessary voltage amplification. A chopper is also needed to convert the d-c
error signal to a proportional a-c one. The chopper and the voltage amplifier
stage are illustrated in Figure 15, If this system is assembled (including a
feedback loop from the ion gauge controller), it could be unstable. It could
also swing back and forth about the final value, taking an inordinately long
time to settle to rest. These types of responses are due to time lags in the
system contributed mainly by the vacuum chamber together with time constants
in the amplifier and associated electronics.

Q It IM +loV
1 JI} -"\NN—"1 0

IOK

| J A A

o=

Q
10K ¢>
——— @ [ . O
Qutput
T, 2N3566
15/75 :

SHIELD

©

|||-—-

Q,=GE 2N2193
Q,=GE 2N2I193
T, = OSBORNE 21549

Figure 15. Chopper and voltage amplifier stage.

Normally the feedback voltage from the output opposes or subracts from
that of the input, so that as the error increases, the restoring torque also
rises. If the time lag between the system input and output becomes great
enough, the feedback voltage reverses polarity and adds to the input. Such
reversal causes the error to increase rather than to decrease. The overswing
continues until the voltage and torque saturation level of the system is
reached. In this case, the system will oscillate continuously. The required
stability and the minimization of the dynamic errors in the system are pro-
vided by the use of electrical compensating networks, since, for mechanical
reasons, the use of a tachometer generator is not desired. ©Such a compen-
sating circuit is shown in Figure 16. Because of the extreme nonlinear be-
havior of the leak valve, the parameters of the compensating network are de-
termined experimentally by trial and error. In order to produce the error
signal from the reference and the actual signals and also to eliminate imped-
ance level problems, a differential amplifier is then necessary in the system.
The differential amplifier and compensating circuit are shown in Figure 16.
It should be noted that the reference signal is produced by a highly accurate

18
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10v power supply through an accurate 10-turn potentiometer. The actual signal
is the output of the ion gauge controller.

800 yf
-
IM
O~ —AAN/
~ ouT
—O0——— W FA—1—0
&
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O- AAN
—
dut
COM
—O— -O

Figure 16. Differential amplifier and compensating circuit.

By experimental trial and error, the above method of assembling the servo
system, a classical controller or a sub-optimal controller results. Such a
sub-optimal controller can be implemented practicably and is economically
feasible. Figure 17 is a block diagram of the suggested sub-optimal system

msnnnwmuh\
pnéﬂag o8
: CHOPPER MOTOR
e B 40 e W W S -l s gl B (PR B U1 B -
AMP. GEAR ICONTROLLER
OUTPUT
PRESSURE

Figure 17. Block diagram of the sub~-optimal system.
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